# cahnhilliard.pyΒΆ

In this script we solve the Cahn-Hiilliard equation, which models the unmixing of two phases under the effect of surface tension.

 6 import nutils, numpy 

The main function defines the parameter space for the script. Configurable parameters are the mesh density (in number of elements along an edge), element type (square, triangle, or mixed), type of basis function (std or spline, with availability depending on element type), polynomial degree, the epsilon parameter, contactangle, timestep, stop criterion, random seed, and a boolean flag for making the domain circular as opposed to a unit square.

 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 def main(nelems: 'number of elements' = 20, etype: 'type of elements (square/triangle/mixed)' = 'square', btype: 'type of basis function (std/spline)' = 'std', degree: 'polynomial degree' = 2, epsilon: 'epsilon, 0 for automatic (based on nelems)' = 0, contactangle: 'wall contact angle (degrees)' = 90, timestep: 'time step' = .01, mtol: 'stop when chemical potential is peak to peak below threshold' = .01, seed: 'random seed' = 0, circle: 'select circular domain' = False): mineps = 1./nelems if not epsilon: nutils.log.info('setting epsilon={}'.format(mineps)) epsilon = mineps elif epsilon < mineps: nutils.log.warning('epsilon under crititical threshold: {} < {}'.format(epsilon, mineps)) domain, geom = nutils.mesh.unitsquare(nelems, etype) bezier = domain.sample('bezier', 5) # sample for plotting ns = nutils.function.Namespace() if not circle: ns.x = geom else: ns.xi = (geom-.5) * (.5*numpy.pi) ns.x_i = '_i / sqrt(2)' ns.epsilon = epsilon ns.ewall = .5 * numpy.cos(contactangle * numpy.pi / 180) ns.cbasis, ns.mbasis = nutils.function.chain([domain.basis('std', degree=degree)] * 2) ns.c = 'cbasis_n ?lhs_n' ns.c0 = 'cbasis_n ?lhs0_n' ns.m = 'mbasis_n ?lhs_n' ns.f = '(6 c0 - 2 c0^3 - 4 c) / epsilon^2' # convex/concave splitting of double well potential derivative res = domain.integral('(epsilon^2 mbasis_n,k m_,k + cbasis_n,k c_,k) d:x' @ ns, degree=7) res -= domain.integral('cbasis_n (m + f) d:x' @ ns, degree=7) res += domain.boundary.integral('cbasis_n ewall d:x' @ ns, degree=7) inertia = domain.integral('mbasis_n c d:x' @ ns, degree=7) energy = dict( # energy breakdown mixture = domain.integral('(c^2 - 1)^2 d:x / 2 epsilon^2' @ ns, degree=4), interfaces = domain.integral('.5 c_,k c_,k d:x' @ ns, degree=4), wall = domain.boundary.integral('(abs(ewall) + ewall c) d:x' @ ns, degree=4)) numpy.random.seed(seed) lhs0 = numpy.random.normal(0, .5, ns.cbasis.shape) # initial condition for lhs in nutils.log.iter('timestep', nutils.solver.impliciteuler('lhs', target0='lhs0', residual=res, inertia=inertia, timestep=timestep, lhs0=lhs0)): E = nutils.sample.eval_integrals(*energy.values(), lhs=lhs) nutils.log.user('energy: {:.3f} ({})'.format(sum(E), ', '.join('{:.0f}% {}'.format(100*e/sum(E), n) for e, n in sorted(zip(E, energy), reverse=True)))) x, c, m = bezier.eval(['x_i', 'c', 'm'] @ ns, lhs=lhs) nutils.export.triplot('phase.png', x, c, tri=bezier.tri, hull=bezier.hull, clim=(-1,1)) nutils.export.triplot('chempot.png', x, m, tri=bezier.tri, hull=bezier.hull) if numpy.ptp(m) < mtol: break return lhs0, lhs 

If the script is executed (as opposed to imported), nutils.cli.run() calls the main function with arguments provided from the command line.

 80 81 if __name__ == '__main__': nutils.cli.run(main) 

Once a simulation is developed and tested, it is good practice to save a few strategicly chosen return values for routine regression testing. Here we use the standard unittest framework, with nutils.numeric.assert_allclose64() facilitating the embedding of desired results as compressed base64 data.

  89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 class test(nutils.testing.TestCase): def _checkrand(self, lhs0): nutils.numeric.assert_allclose64(lhs0, 'eNoBxAA7/xM3LjTtNYs3MDcUyt41uc14zjo0L' 'zKzNm812jFhNNMzwDYgzbMzV8o0yCM1rzWeypE3TcnxL07NzTa4NlMyETREyrPIGMxYMl82VDb' 'jy1/M8clZyf3IRjday6XLmMl6NRnJDs1Ayh00WMu1yQHRUDSsMKIz7MoEzM/KCMxwyvjIlzLQy' 'xTJdjQ5yjEwWjX3MTk2n8kwNMbKTsoay1DMWDC8ycM1eTQyyb42NzdKNmLN5skSNs/LXDbnMuw' '19DNKNREtGTfui1ut') @nutils.testing.requires('matplotlib') def test_square(self): lhs0, lhs = main(nelems=3, timestep=1, mtol=.1) self._checkrand(lhs0) nutils.numeric.assert_allclose64(lhs, 'eNqbZTbHzMHsiGmpCd9V1gszzWaZ2ZjtMQ01eX' 'V+xbk0szSgzAaTDxdNTkue1jbTMpM15TJqP/335PeT100vmyqYaJ3tPNV1svNknmmKqYJR+On3' 'J01Pmp9MMY0y/WIYCOSZn7Q82XCi8UTXiSkn5pxYBISovJYTrSd6T0wD8xae6ATCCSemn5gLlu' 'sFwiknZp9YcGIpEE4Ewhkn5p1YfGIFEKLyAN6wcSE=') @nutils.testing.requires('matplotlib') def test_contactangle(self): lhs0, lhs = main(nelems=3, timestep=1, mtol=.1, contactangle=45) self._checkrand(lhs0) nutils.numeric.assert_allclose64(lhs, 'eNqzNsszkzZbbfrdOOus6Jlss5lmPmbPTQtNtp' '6be8bZrNTss6mW6SMDv9OnTokDZRpMbxl7nNE89fTkItNHpl0mT8+fOzX3ZP7J3yb+ph1G206z' 'n7I+KXWyyOSeibK+1ulzJyVP/joRZhJp0m6yyeSyyXsgDAfy2kw2mlw0eWvyxiTLJNtkgslmk3' 'Mmz4CwzqTeZLbJNpOzJo+AcIrJVJO1JkdMbpi8BsLlJitM9gHNeGLy2eQLkLfSZL/JFZOnJl+B' 'EAAJrlyi') @nutils.testing.requires('matplotlib') def test_mixedcircle(self): lhs0, lhs = main(nelems=3, timestep=1, mtol=.1, circle=True, etype='mixed') self._checkrand(lhs0) nutils.numeric.assert_allclose64(lhs, 'eNrTM31uImDqY1puGmwia1prssNY37TERNM01e' 'SOkYuJlck6Q1ED9TP9px+fOmq82FjtfKFJiM6CK70mBsZixmUXgk9XnMo7VX6661zL+cZz58+l' 'n0s6e/PM7DOvjDTOvTz97tS8c6xn9pzYemLHiQMn9p9YDyS3nth4YteJbUCRHUByO5DcfGLDie' 'UnlpyYA2RtP7HpxJ4T64Aih8Bwz4k1QPF5QJ3rgap3ntgCVAHRe+bEbiBr5YmDQBMBKJ13Eg==')